skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cooke, Jeff"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper presents the first public data release (DR1) of the FRB Line-of-sight Ionization Measurement From Lightcone AAOmega Mapping (FLIMFLAM) survey, a wide field spectroscopic survey targeted on the fields of 10 precisely localized fast radio bursts (FRBs). DR1 encompasses spectroscopic data for 10,468 galaxy redshifts across 10 FRB fields withz < 0.4, covering approximately 26 deg2of the sky in total. FLIMFLAM is composed of several layers, encompassing the “wide” (covering ∼degree or >10 Mpc scales), “narrow” (several arcminutes or ∼Mpc), and integral field unit (“IFU”; ∼arcminute or ∼100 kpc) components. The bulk of the data comprises spectroscopy from the Two Degree Field-AAOmega instrument on the 3.9 m Anglo-Australian Telescope, while most of the narrow and IFU data was achieved using an ensemble of 8–10 m class telescopes. We summarize the information on our selected FRB fields, the criteria for target selection, methodologies employed for data reduction, spectral analysis processes, and an overview of our data products. An evaluation of our data reveals an average spectroscopic completeness of 48.43%, with over 80% of the observed targets having secure redshifts. Additionally, we describe our approach to generating angular masks and calculating the target selection functions, setting the stage for the impending reconstruction of the matter density field. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract We present Cryoscope, a new 50 deg2field-of-view, 1.2 m aperture,Kdarksurvey telescope to be located at Dome C, Antarctica. Cryoscope has an innovative optical–thermal design wherein the entire telescope is cryogenically cooled. Cryoscope also explores new detector technology to cost-effectively tile the full focal plane. Leveraging the dark Antarctic sky and minimizing telescope thermal emission, Cryoscope achieves unprecedented deep, wide, fast, and red observations, matching and exceeding volumetric survey speeds from the Ultraviolet Explorer, Vera Rubin Observatory, Nancy Grace Roman Space Telescope, SPHEREx, and NEO Surveyor. By providing coverage beyond wavelengths of 2μm, we aim to create the most comprehensive dynamic movie of the most obscured reaches of the Universe. Cryoscope will be a dedicated discovery engine for electromagnetic emission from coalescing compact binaries, Earth-like exoplanets orbiting cold stars, and multiple facets of time-domain, stellar, and solar system science. In this paper, we describe the scientific drivers and technical innovations for this new discovery engine operating in theKdarkpassband, why we choose to deploy it in Antarctica, and the status of a fifth-scale prototype designed as a Pathfinder to retire technological risks prior to full-scale implementation. We plan to deploy the Cryoscope Pathfinder to Dome C in 2026 December and the full-scale telescope by 2030. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parametersb≲r200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to be f igm = 0.59 0.10 + 0.11 and a CGM gas fraction of f gas = 0.55 0.29 + 0.26 for 1010M≲Mhalo≲ 1013Mhalos. The mean FRB host dispersion measure (rest-frame) in our sample is DM host = 90 19 + 29 pc cm 3 , of which DM host unk = 69 19 + 28 pc cm 3 arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentfigmandfgasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine. 
    more » « less
  4. Abstract The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution of D M h o s t = 430 220 + 140 or 280 170 + 140 p c c m 3 (observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be F ˜ G 4.5 11 ( pc 2 km ) 1 / 3 , suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe. 
    more » « less
  5. Abstract The current data acquisition rate of astronomical transient surveys and the promise for significantly higher rates in the next decade necessitate the development of novel approaches to analyze astronomical data sets and promptly detect objects of interest. The Deeper, Wider, Faster (DWF) program is a survey focused on the identification of fast-evolving transients, such as fast radio bursts, gamma-ray bursts, and supernova shock breakouts. It employs multifrequency simultaneous coverage of the same part of the sky over several orders of magnitude. Using the Dark Energy Camera mounted on the 4 m Blanco telescope, DWF captures a 20 s g -band exposure every minute, at a typical seeing of ∼1″ and an air mass of ∼1.5. These optical data are collected simultaneously with observations conducted over the entire electromagnetic spectrum—from radio to γ -rays—as well as cosmic-ray observations. In this paper, we present a novel real-time light-curve analysis algorithm, designed to detect transients in the DWF optical data; this algorithm functions independently from, or in conjunction with, image subtraction. We present a sample of fast transients detected by our algorithm, as well as a false-positive analysis. Our algorithm is customizable and can be tuned to be sensitive to transients evolving over different timescales and flux ranges. 
    more » « less
  6. Abstract The FLIMFLAM survey is collecting spectroscopic data of field galaxies near fast radio burst (FRB) sight lines to constrain key parameters describing the distribution of matter in the Universe. In this work, we leverage the survey data to determine the source of the excess extragalactic dispersion measure (DM), compared to Macquart relation estimates of four FRBs: FRB20190714A, FRB20200906A, FRB20200430A, and FRB20210117A. By modeling the gas distribution around the foreground galaxy halos and galaxy groups of the sight lines, we estimate DMhalos, their contribution to the FRB DMs. The FRB20190714A sight line shows a clear excess of foreground halos which contribute roughly two-thirds of the observed excess DM, thus implying a sight line that is baryon dense. FRB20200906A shows a smaller but nonnegligible foreground halo contribution, and further analysis of the intergalactic medium is necessary to ascertain the true cosmic contribution to its DM. FRB20200430A and FRB20210117A show negligible foreground contributions, implying a large host galaxy excess and/or progenitor environment excess. 
    more » « less
  7. Ellis, Simon C.; d'Orgeville, Céline (Ed.)
    Many areas of astronomical research rely on deep blue wide-field imaging. Mauna Kea enjoys the very best UV transparency from the ground and the Keck telescopes with 10 meter f/1.75 primaries are well suited to a prime focus camera with a large angular field. Swinburne University leads a proposal to provide a camera (KWFI, for Keck Wide Field Imager) that is optimized in the UV but works well to 1μm wavelength. Keck has interchangeable top end modules, of which one is now unused and easily capable of housing the required corrector lens and detector enclosure. This paper concentrates on details of the KWFI optical design. 
    more » « less
  8. null (Ed.)